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Analysis of Transmission Lines of Finite Thickness
Above a Periodically Perforated Ground
Plane at Oblique Orientations

Guangwen Pan, Senior Member, IEEE, Xiaojun Zhu, Student Member 1EEE,
and Barry K. Gilbert, Senior Member, IEEE

Abstract— A general method is formulated for the analysis of
signal lines of finite thickness in the presence of a periodically
perforated ground plane. Utilizing the dyadic Green’s functions, a
set of electric and magnetic field integral equations (EFIE, MFIE)
is established, which are then transformed into the spectral
domain by the Fourier transform. Galerkin’s method is used to
solve the combined integral equations. The B-spline functions
are chosen as basis functions to achieve a higher order of
convergence. The dispersive characteristics of the transmission
lines are studied and the characteristic impedance of the signal
lines are evaluated by both the voltage-current definition and
the power-current definition, with good consistency. The effect of
signal locations versus apertures in the ground plane is discussed.
Finally, measurements are conducted, and the results agreed very
well with the theory.

I. INTRODUCTION

ERIODICALLY perforated conductor screens have be-

come an important part of modern microelectronic pack-
aging. In particular, the so-called deposited metal-organic
multichip modules (MCM-Ds), which represent the newest
electronic packaging technology for high performance digital
processors, typically are fabricated with meshed rather than
solid power and ground planes [1].

The modeling and simulation of electromagnetic perfor-
mance for modern packaging with solid ground plane(s) have
been studied by the quasi-static and full-wave approaches
[2]-15]1, while the propagation characteristics of a signal line
above a periodically perforated ground have previously been
studied [6]-[8].

In [6], the relationship between the fields and the electric
current is derived from the boundary condition under the as-
sumption of infinitesimally thin conductors, and the periodicity
of the structure is taken into account by using the Floquet
principle. Using a similar method, Chan et al. [8] studied the
case in which the signal lines are in a multilayered medium.
In both cases the apertures are rectangular, the signal lines
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are parallel to the edge of the apertures, and the conductors
are assumed to be of zero thickness; both methods employed
EFIE formulation.

One disadvantage of the EFIE formulation is that in order
to find the solution, the electric current on all conductors
needs to be solved, which results in a large matrix and
requires substantial computing resources. When the structure
is very complicated, it is impractical to use this method due
to the complexity of the current distribution, and the slow
convergence of the double Fourier series.

In this paper, a set of surface EFIEs and surface MFIEs
are derived by imposing the dyadic Green’s functions. The
periodic system is obtained by finding the Fourier transforms
of the field and current distributions. The contribution of the
meshed ground plane is taken into account by the magnetic
current and the images of the signal lines. Thus, a combined
EFIE and MFIE method is formulated. These integral equa-
tions are then converted into a set of matrix equations using
Galerkin’s method, and an eigenvalue problem is established.
Solving the eigensystem, all the working modes of the system
are obtained.

Once the eigensolution is attained, the characteristic impe-
dance of the signal lines is evaluated by the voltage-current
definition and the power-current definition. It is shown that
the characteristic impedance is a constant along the signal
direction. This finding is very much in contradiction to the
conventional concept and the results given by [9], in which
the impedance of the signal line is larger above the apertures
than that above the ground metal.

One important factor in Galerkin’s solution is the choice
of the basis functions. Since the convergence of the double
Fourier series depends upon the smoothness of the basis, a
carefully chosen basis may speed up the rate of convergence
significantly. In this paper, the B-spline functions of different
orders will be used as basis functions.

The periodic apertures make the system behave as a slow
wave structure, which is undesirable in the high speed cir-
cuitry. As a result, we focus on the characteristic impedance
and the dispersive behavior of the signal lines, which are
affected by the shape, size and orientation of the apertures,
as well as by the relative locations of the signal lines to
the apertures as will be seen in Table I of Section IV.
This slow wave phenomenon was not detected by the FDTD
method (Table IV, [11]). Finally, we present the results of
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Fig. 1.

Two-dimensional periodic structure.

measurement conducted on a test coupon, with the theoretical
results compared with the measurements.

The remainder of this paper is arranged as follows:
Section II provides the basic formulation of the method, in
which a detailed derivation of the integral equations based
on the equivalence principle and dyadic Green’s functions
is presented. Section IIT discusses the choice of the basis
functions and presents the Galerkin’s solution for the cases
where the signal lines are oriented arbitrarily. Section IV
compares the two definitions of the characteristic impedance.
Section V presents the numerical results and comparisons. A
conclusion is presented in Section V.

II. GENERAL FORMULATION

In this section, we shall derive the combined field integral
equations for a strip line above a perforated ground plane
by means of the equivalence principle and dyadic Green’s
functions.

A. Equivalence Principle and Integral Equations

A general structure of the system is shown in Fig. 1 in which
the shape of the apertures can be arbitrary, as long as the
configuration is periodic. Employing the boundary condition,
we obtain the EFIE as

E.(r)xn=20 0))

where E,(r) denotes the electric field induced by the electric
current. Using the dyadic Green’s function, we have

E.(r) = ~jon [ Grnlnd) ICH0

In the previous equation r € S, the surface of the conductors,
and G g, (r,r’) is the dyadic Green’s function, which will be
given later. The EFIE approach requires the electric current
on all conductor surfaces including signals and ground planes
to be specified. It turns out that such an approach makes
the problem too computationally expensive to solve when the
apertures are small compared to the conductor area.
Alternatively, the approach we employed here is the EFIE-
MFIE hybrid method. Imposing the equivalence principle,
we are allowed to close the apertures with perfect conductor
sheets, and then place a pair of magnetic current sheets in the
hole region. The resulting magnetic current is defined as

M(r)=E(r) x i 3)

Thus the problem has become that of finding the electric
currents on the signal lines above a solid perfect ground, and
the magnetic currents above the aperture area. Applying image
theory, the ground plane is removed, with its effect replaced by
the images of the electric current and magnetic current. Based
on this approach, the free space dyadic Green’s functions can
be used.

In an manner similar to the EFIE formulation, on the
conductor surface, we have

{E.(J) +En(M)} xA=0 )

The electric field induced by magnetic current sources is
E,(r) = /(—}Em(r,r’) - M(r')dv' (5)

where G g,, are the dyadic Green’s function (whose forms
will be provided later in this section).

For a ground plane of zero thickness, the tangential compo-
nents of the magnetic fields are continuous across the boundary
in the aperture region. As a result, we arrived at the magnetic
field integral equation

A x [Ho(J) + H,,,(2M)] = 0 (6)

where M denotes the magnetic current above the apertures.
These magnetic fields can be computed by the corresponding
integrals, involving the corresponding dyadic Green’s func-
tions. The four dyadic Green’s functions are

mwzfém@ﬂJWW/ ™

H,(r) = —jwe/ Ggm(r,r’) - M(r')dv' (8)
where Gy, and Gp,, are the free space dyadic Green’s
functions. The four dyadic Green’s functions are

= 1

Gr(r,r') = Ggm(r,v') = I+ 2 VV)g(r,r') (9)

Gu.(r,v') = Gen(r,t') =V x Gge(r,r')  (10)

where
ikl .
g(r,r’) = prE— a1

In the previous equations the first subscript denotes the type of
field, while the second denotes the type of source. The effect
of the ground plane is taken into account by including the
contribution of the image currents.
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B. Spectral Domain Representation of Currents and Fields

Consider a two-dimensional structure as shown in Fig. 1 in
which the structure is periodic with period A, and A, in x
and y direction, respectively. By using the Floquet theorem,
the electric current can be written as

:B Y,z Z Z Jom Z)eJ(Nznw-f"ﬂymy) (12)
n=—o m=—~oco
with K':cn = Pxn,Bym = Dym + kyO; Paen = 21{17?, and
Pym = — . kyo is the propagation constant in y direction,
y A, propag Y

and J nm(z) is the Fourier coefficients given by

(w,y,2)e " @enmtPum¥) dardly (13)

Jom(2)=

Ay Jo

which is a function of spatial coordinate z only. Similarly we
can represent M(z, vy, z) by Fourier series.

To find the spectral domain representation of the fields, we
first give the spectral domain representation of the Green’s
function. For two-dimensional periodic structures, we have

g(z_zlﬂq'wn,/‘@ym) = //g(nr’)ej[ﬂmn(w/ﬂv)-mym(y’_y)]dl»/dy’

(14)
which has a closed form as
N ' g dkznmle=2| 15
g(z“zanxnvhym)_m (15)
where
Kanm = \/ k& — K2, - K2 (16)

If the structure is periodic only in the propagation direction,

we have
\fKop i — k) a7

where Ko(p4/kZ,, — kz) is the modified Bessel function, and

p=+(z—-2)+

For simplicity, in the following derivation we only dis-
cuss the two-dimensional periodic case, the one dimensional
case can be obtained very easily in a similar fashion. For
convenience, we define Gg as

glz — ',z —

(z - 2)2 (18)

Go(2,y,2,2 n,m) = §(2— 2’ g fym)e? Eentvmy)  (19)
Yy

By defining 8, = Kgn + Kym¥ — Kznm|2 — 2|, where 0,,,,
is a function of z,y, z, 2’ and also of k., and K., we have

ejenm

Go(z,y,2,7 ,n,m) = (20)

]2’€znm
The fields induced by the electric and magnetic sources are
obtained in the following form

E / nm* nm eJ9nmdz

(z,y,2 (21)

E.(z,y,2) = Z/Tf$~Mnm(z’)eﬁ”mdz’ (22)

e(z,y, 2

Z / THe Jpm(2)efrmdy  (23)

,y,% Z / Yom - Mum(2)ePmdz’ (24)

where Z,m, TZ™ THe and Y ,,,, are 3x 3 tensors. The tensor

nm:?
elements of Z and Y are obtained as

W Kakg We Kakg
VA nm — 573 = 372
O T O T U . )
where {a,8 ==z,y,2}, o # 3, and
kg — k2 k2 — k2
Zaomm = el (—~'—)7 Yozomm = __f_(_O_L)
Zk B2nm 2k Kanm
(26)
where « = x,y, and
Zzznm = WI‘; (k kgnm) jzﬁ;znmé(z — ZI) (27)
2k Konm
we (k§ — kZu) = 1262mmb(z — 2')
Vionm = =517 - (28)

In the previous equations the use of the relation has been made

isgn(z -2 =26(z—~2") (29)

dz

where sgn(z) is the sign function.
The tensor elments of T#™ and TH¢ are obtained as

Tonm = T = 0 (30)
where a = z,y, 2, and
Tﬁ]}jm Ty}fcflm = -—Tﬁ’,’fm = —Tﬁim = —%sgn(z -2
Tmm = Tiaem = ~Tiamm = ~Tfiam = — 52
TyEzZLm Tin;m - ‘TzEg]Trle == —Tgﬁzm = %?;
(31)

Thus we get the final form of the combined integral equations
as

ﬁxZ/{an‘Jnm(zl)+T'E:nn'Mnm}ejenmdzlz() (32)

Mumje?®mdz' =0 (33)

an/{THe )+
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Fig. 2. Two-dimensional spline basis, first order in x direction and second
order in y direction. Solid line: b(x,y) = Bi(x)B2(y); dashed line:
b(gjﬂ Yy — 1) = B (x)Bg(y — 1).

III. NUMERICAL SOLUTION OF INTEGRAL EQUATIONS

A. Expansion of Currents with Piecewise Basis

As a first step in the numerical solution, we expand the
surface current by means of a set of basis functions, yielding

|Ja(:v,y,z)) = [BZ]IJQ> (34‘)
|Ma(z,y, 2)) = [By]|1Ma) 35)
where {a = m,y,2} respectively; {bgi(:z:,y,z), a =

x,y,2,8 = e,m} are the ¢ — th basis function for the six
current components. It follows that the Fourier transform of
the currents is obtained as

anm(2)) = [ Bl | 1) (36)

[Manm(2)) = | B | 1Ma) 37

where BY  (z) are the Fourier transform of the basis func-
tions {65 (2),a = z,9,2,8 = e,m}.

If only the surface currents are considered, the volume
current degenerates to a surface current distribution. Thus
the basis functions are defined on surfaces, and in this paper
the basis functions are defined in rectangular patches. Using
local coordinates, for convenience, the basis functions have

the following form

Buoz == P(U, — Uua)T('U -~ Uuoz)(s(w - wua) (38)

where v and u are respectively the direction of the current
flow and the transverse direction, w is the normal direction to
the conductor surface.

As discussed before, both fields and currents are represented
in the form of two dimensional Fourier series. The conver-
gence of the series is a very important factor in numerical
computations. To achieve a rapid convergence rate, a smooth
basis should be used. In this article, the B-spline functions of
different orders are used for functions P(w) and T'(v).

A B-spline function of N-th order is defined as

By(z) = By-1(z) * Bo(z) (39)

Fig. 3. Redefined period and coordinate rotation: rectangular apertures.

where * denotes the convolution operator, and By (z) has a
compact support of [0, N + 1], that is, it is nonzero only within
[0, N + 1]. The commonly used pulse function and triangle
functions are the simplest B-spline functions of order 0 and
order 1. A third order B-spline function has the following form

4
1 4 ! 3
Bs(z) = 5;@ )(—1) (z - 1% (40)
where
Jz—=1 if z>1
e {O otherwise 1)
The Fourier transform of the B-spline functions takes the form
i N1
- 1—e™i%
Byw) = (*55) “2)
jw

It may be noted that we can increase the rate of convergence
of the double Fourier series by increasing the smoothness of
the basis functions. However since the high order splines take
more spatial support, a finer discretization is needed. An effect
way to avoid this problem is using higher order splines in the
current direction, while using lower order splines for the other
direction. An example of hybrid spline basis is shown in Fig. 2.

B. Galerkin’s Method and Matrix Equation
Substituting (36), (37) into (32), ( 33), we have

B B
> /nx Lo |[BIV )+ T o (BIM] pe?®mdz" = 0 (43)
nm B ] TIM
] [B:7IM.]|
> /nx T ABIVS+Y nm |[BIYM,) pe?®nmdz’ = 0 (44)
nm 5] [BIM ]

which are two sets of linear equations with finite number of
unknowns. By choosing the weighting functions in the same
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1.0

Fig. 4. x-component of electrical field in the aperture, by EFIE-MFIE hybrid
method.
1.0
0.5
Z 0.0
0.5
-0.1
1.2
02" o4
Fig. 5. x-component of electrical field in the aperture, by EFIE method.

way as the set of basis functions, we have a Galerkin solution
for the combined field integral equations

Ee Em

[Zaﬁ] [Ta ] j] {[Jﬁ] } =1[0)
He M M,

\Tis | {vdm] | M)

where «, 8 = z, ¥, 2, each of the four submatrices is a 3 x 3

submatrix with the matrix elements as

[Xaglyy =Y / / X opnm BS i(Dan, Pym)

(45)

A . 1’
B§ i (kn, mym)e"””’”z_z ld2' dz

(46)

where X = Z, 7™ THe and Y, X = Z, TF™, THe and Y,
a,f = z,y,z

25~

EFIE-MFIE

1.0

05

0.0 l l l L I { |
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Ky

Fig. 6. Comparison of dispersive characteristics between EFIE-MEIE hybrid
method and EFIE method.
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Fig. 7. Comparison of impedance between P-I and V-I definitions.

By enforcing the determinant of the coefficient matrix of
(45) to zero, we will solve for the propagation constant k,,
and furthermore, for the eigen current and field distributions.

C Expansion of Magnetic Currents and Coordinate Rotation

Though the ground plane is periodically perforated with
rectangular apertures, the periodicity of the structure depends
on the orientation of the signal lines. Aj,A,, the period
of the structure in x and y direction, are determined by
tand = %l, which must be an rational number. Since a
rational number is defined by the ratio of two integers,
A, A, are the corresponding minimal integral numerator and
denominator, respectively. Fig. 1 depicts the case in which the
angle between the aperture edge and the signal line is §. When
§ = 0, we obtain a parallel problem similar to that of [6]; when
0 = 45°, we get a structure in which the signal lines are in
the diagonal direction of the apertures. Note that the basis
functions are defined on rectangular cells. For the structures
in Fig. 3, one problem with the Fourier series expansion of the
current is that some basis functions are divided into different
periods, where each period is usually defined as a rectangular



388 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 43, NO. 2, FEBRUARY 1995

0.125

0.120

50% Rectangular
0.115 — _ .eeee..,, Aperture

50% Square

0.100 # 25% Square

in Direction of Signal Propagation, Ky

0.110 '—‘--..-.......-."’-

.
-""'J"“".'
"
-

Frequency Dependent Propagation Constant

Aperture
0.095 L—
0.080 —
0.085 L
0.080 ! B L l | J | |
05 -04 -03 -02 -0.1 0.0 0.1 0.2 0.3 0.4 0.5
X

Relative Position of Signal Trace Orthoganal to
Signal Propagation Direction

Fig. 8.

cell, as shown in Fig. 3. This problem can be circumvented
by utilizing the periodicity of the Fourier transform and the
periodicity of the structure, that is, to rearrange the unit cell
as shown in the rectangular bordered by dashed lines, and
referenced to the (z',y’) coordinates. Mathematically the old
and new unit cells are equivalent.

Consider the general structure in Fig. 1, where the angle
between the signal line and the edge of aperture in the ground
is denoted as 6. In (z, y) coordinates, the x and y components
of the magnetic current are obtained by expanding them in the
(#',y") coordinate in terms of basis functions,

N Ny
M= MobTicos — > My,b7;sind  (47)
=1 =1
N Ny
My =Y M blsinf+ % My;Byicost  (48)
=1 =1
where
z=2ga"cosf — gy sind y=2xz'sinf+1y cosf  (49)
then Fourier coefficients of M, and M, are
Mynm | _ |cos8 —sinb || My nm
[Mynm } - Lin 0 cos 0] [My/nm } 50

where

Ny
Marum = / / Mo, b2 eI Ponm® +Punnd) do! dy' (51)
=1 !

Propagation constant ky versus x, 25% square, 50% square, and 50% rectangular apertures, 45° case.

Mymm =3 / | My e et el dy (52)
=1

where py/nm, pynm are defined as pl,,,, = puncosf +
Pym sin 0, p;nm = —Pgn sin @ + pyp, cos b

D. Convergence of the Fourier Series

The numerical solution involves the calculation of the
two dimensional summations which are truncated at some
lengths that are determined by the convergence rate of the
series. Denoting the convergence rate of the basis function as
Ny X Ny,

A 1

where N,, N, are the orders of the basis in dimensions v and
v, and (u,v) = (z,y) or (z',y’), then the convergence rate
of each element is in the order of 4(N, + 1) x (N, + 1) for
the Galerkin solution.

Rigorously speaking, (53) only gives the asymptotic conver-
gence property of the series. Besides the rate of convergence,
the length of the summation for the given accuracy also
depends on the size of the geometry. If the discretization size
is too small, a longer truncation is needed.

One problem with the coordinate rotation is the convergence
behavior of the two dimensional Fourier series. Note that the
basis functions are defined in the source region while the
testing functions are defined in the field region. They may
be defined in the primed and unprimed coordinate systems,
respectively, and their Fourier transform, in this case, will
be the functions of pen, pym and pl,.,, Pyam» OF 7, M, 7 +
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Fig. 9.

m,n —m if § = 45°. As a result, the rate of convergence
may not be as high as estimated above. Fortunately, this case
only occurs for the interaction between the signal line and
the ground aperture, there is an exponentially decaying factor
associated with |z — 2’|, which makes the series converge very
rapidly.

IV. EQUIVALENT TRANSMISSION LINE
MODEL AND CHARACTERISTIC IMPEDANCE

Given the fact that the structure has discontinuities in
the propagation direction, it is natural to conceive that the
characteristic impedance is the function of the position along
the line. It is true if we only consider the traveling wave.
However, by solving the eigen equation in the last section, we
obtained the propagation velocity and eigen current and field
distributions for the dominant mode. This mode consists of
the superposition of all spatial harmonics, each of them can
not exist by itself except under some special circumstances
such that the period is the multiples of the wavelength. As
a consequence, there does not exists a pure traveling wave
but a combination of the traveling waves and standing waves.
Hence the characteristic impedance of the signal line is not
uniquely defined [12].

However, if the working frequency is not extremely high
so the period is smaller than the wavelength of interest, and
the displacement current is much smaller than the conducting
electric current, we can establish a uniform transmission line
model from the fact that the propagation current is a constant
along the signal line. The characteristic impedance of the
equivalent transmission line can be defined either by the

Impedance Z. versus x, 25% square, 50% square, and 50% rectangular apertures, 45° case.

voltage-current definition or power-current definition [13]. As
shown later later, these two definitions are consistent.

By letting the potential of the ground plane be zero, the
voltage-current definition gives the characteristic impedance
as

Vi)

Zo(y) = ==

W=7 (¥)

In the above equation I(y) is the electric current flowing in the

propagation direction on the signal line, which is a constant
along the signal line and can be evaluated from

1) = § Ble,y.2)-d

(34

(35)

while V(y) is the electric potential of the signal line which
is defined as

Vi) = [ By -a (56)
g
where g, s are the reference points at the ground and signal
line, respectively. Since the electric potential in the aperture
region is not zero, the reference point ¢ should be chosen on
the conductor part of the ground plane.
The power-current definition of the impedance is

2P
Z.=
P2

where P is the average power associated with the eigenfields
flowing through a period, and can be found as

Ay oo
P:/ da:/ Sydz
0 —0o0

(57

(58)
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Cascade Microwave
Probe Site

12 um Signal Line

memms 30 pm Signal Line

G = Ground
S = Signal

Cascade Microwave
Probe Site

Fig. 10. Configuration of Boeing test coupon. Mesh ground plane is 40 um pitch, 25% aperture. Probe pad size is 75 X 100 pm, 150 gmpitch. Pads are
arranged in G-S-G configuration, and electrically conected to signal lines and ground through vias.

where
1
S, ==
Y2
the superscript * denotes the complex conjugate.

From Egs.(21)-(24), the Poynting vector takes the following
form

Re{E x H*} . § (59)

Sy =530 3 (B x Hiy} 3

nm n'm’

(60)

where

E,, - / (Zum - 3(2') + TE™ . M, )ei®mdz (61)

H,,, / (TH - 3(2') + B My )Oomds’ (62)

From the orthogonality of trigonometric functions, the integra-
tion with respect to z in Eq.(58) will annihilate the summation
with respect to n/, and we obtained the expression for power as

Ay * . X
P==" > /_W{Enm x HE, .} - ddz

nmm/’

(63)

V. NUMERICAL RESULTS AND MEASUREMENTS

As a numerical example, we first studied the structure in
Fig. 1 with § = 0, in which the signal lines are oriented
directly above the center of the apertures and parallel with
the aperture edges. The normalized dimension of the structure
has a period of 1 unit x1 unit with a 56.25% square aperture;

the width and height of the signal lines are 0.25 and 0.5,
respectively. This structure is also studied in [6] and [8] by
means of the EFIE formulation. In this paper, the structure
is solved by the hybrid EFIE-MFIE formulation. The x-
component of electric field F; in the aperture region is plotted
in Fig. 4 from the hybrid method, and Fig. 5 from EFIE
method. From these figures it may be observed that the EFIE
approach results in significant numerical errors that lead to
large nonzero tangential fields at the aperture edges. These
nonzero fields make the effective aperture area appear larger
than it should be. On the contrary, the hybrid solutions satisfy
the boundary condition accurately, thus providing better results
than does the EFIE method.

Fig. 6 compares the propagation constant obtained by the
two methods: the solid line represents the result for the
hybrid method and the dashed line for the EFIE method. At
ko = 0.01, the EFIE generates the value of the propagation
constant of the dominant mode of k, = 0.010683, which is
essentially the same as the result from the hybrid method.
As the frequency increases, i.e. for larger ko, the EFIE
demonstrated a greater dispersion of the propagation constant
with frequency than does the hybrid method, due to the larger
effective aperture, which is inaccurate.

To verify the validity of the two definitions of the character-
istic impedance given in the previous section, we computed the
impedance of the structure as shown in Fig. 1 with § = 45°.
The signal lines in this structure are 12pum wide, 5pum
thick, and 5 pm above a perfect ground plan perforated with
40 x 40 wm square apertures; the line pitch is 80 um. By
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Fig. 11. TDR measurement of characteristic impedance on HP54123,

normalizing the period to 1 x 1, we converted the width
and height of the signal line to 0.212132 and 0.088388. In
principle, the formulae (32) and (33) are full wave equations,
and can handle transmission lines of finite thickness. However,
for simplicity, we ignored the thickness of the signal lines in
the next few examples. After the eigencurrents and eigenfields
are obtained, the characteristic impedance is evaluated by
means of the voltage-current and power-current definitions.
The results are illustrated in Fig. 7. It may be observed that the
two definitions give approximately the same results. However,
since the power-current definition involves triple summations,
much more CPU time is required to achieve the result.

To study the variations of dispersion and impedance caused
by the relative position x of the signal line with respect to the
aperture , and the shape and size of the apertures, we calculate
the propagation constant and characteristic impedance employ-
ing the EFIE-MFIE approach. The propagation characteristics
and the characteristic impedance versus location x are shown
in Figs. 8, 9, where the normalized wavenumber is chosen to
be ko = 0.1, the aperture size is 25% and 50% for square
apertures, and 50% for rectangular aperture, respectively.

The comparison of the propagation velocities of the signals
for different structures are shown in Table I, where four cases
are calculated. The width of the signal line is 12 um, height to
the ground is 5 ym, pitch-to-pitch distance is 80 wm, all with
50% aperture/period ratio. The working frequency is chosen
at 5.9GHz which corresponds to ky = 0.01. The length of
the Fourier series are chosen at L, = 16,L, = 16 and
L, = 32,L, = 32, respectively, the results are accurate to
the fifth digit. We can see that the location and shape of the
aperture affect the dispersion greatly.

From the figures described above, we can see that disper-
sion and impedance depend on the percentage area of the
conducting planc directly beneath the signal line. To reduce
the variance of dispersion and impedance as functions of z,
a rectangular aperture meshed ground plane is proposed in
[14]. This proposal has been rigorously evaluated in this paper.
The dispersion and impedance values versus location z for
a rectangular aperture meshed ground plane, in which the

dimension of the aperture is 3{,2 X %, as shown in Fig. 3.
Comparing these results with the other curves in Figs. 8 and
9 we conclude, in contradiction to the claim in [14], that
the rectangular aperture scheme slightly improves impedance
but worsens dispersion over the square aperture scheme.
Nonetheless, from the manufacturing perspective, particularly
for correct alignment of through-hole vias, the rectangular
scheme is much more difficult to fabricate with high yield.

To verity our numerical solutions, we measured the char-
acteristic impedance of a meshed ground plane test coupon
donated by the Boeing Aerospace Co. The measurements
are conducted on both an HP-8510C network analyzer and
on an HP-54123 sampling oscilloscope. Fig. 10 shows the
configuration of one of the meshed ground plane test coupons
designed and fabricated by the Boeing Aerospace Co., while
the TDR measurement of the coupon from the HP 54123
is plotted in Fig. 11. Table II shows the comparison for
different approaches. We can see from the table that when
the finite thickness of the signal lines is incorporated into the
simulations, the numerical results agree very well with the
measurements.

VI. CONCLUSION

In this paper, the dyadic Green’s function formulation is
applied to derive a hybrid EFIE-MFIE method. The method
can be easily extended to the analysis of multilyered structures
[15],[16]. The B-spline functions are employed as the basis
set. It is found that faster convergence can be achieved by
an increase in the order of the splines. The method can also
be adapted for the lossy conductor case. Several numerical
examples are presented, and a real-world structure is analyzed.
The effects of the location of signal lines, and the shape and
size of the metal plane apertures on signal dispersion and line
impedance are studied. Numerical results agreed well with the
measurements.

v is the signal propagation velocity of a strip line above
a solid ground plane.
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TABLE 1
COMPARISON OF SIGNAL PROPAGATION VELOCITY FOR DIFFERENT STRUCTURES

vp/ve = 0.9514
vp/ve = 0.8237
vy /ve — 0.9058
vy Ve = 0.8901

v, is the signal propagation velocity of a strip line above a solid ground plane.

above conductor
above aperture

Parallel case

square
rectangular

Diagonal case

TABLE II
COMPARISON BETWEEN NUMERICAL RESULTS AND MEASUREMENTS

Models Impedence
Numerical Result t=0 57.5Q2

t=5p4 m 53.4Q)
Measurement (Averaged) HP8510C 52.0Q

HP54123 53.3Q
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