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Analysis of Transmission Lines of Finite Thickness

Above a Periodically Perforated Ground

Plane at Oblique Orientations
Guangwen Pan, Senior Member, IEEE,

and Barry K. Gilbert,

Abstract-A general method is formulated for the analysis of
signal lines of finite thickness in the presence of a periodically

perforated ground plane. Utilizing the dyadic Green’s functions, a

set of electric and magnetic field integral equations (EFIE, MFIE)
is established, which are then transformed into the spectral

domain by the Fourier transform. Galerkin’s method is used to
solve the combined integral equations. The B-spline functions

are chosen as basis functions to achieve a higher order of
convergence. The dkpersive characteristics of the transmission
lines are studied and the characteristic impedance of the signal

lines are evaluated by both the voltage-current definition and

the power-current definition, with good consistency. The effect of
signal locations versus apertures in the ground plane is discussed.

Finally, measurements are conducted, and the results agreed very

well with the theory.

I. INTRODUCTION

P ERIODICALLY perforated conductor screens have be-

come an important part of modern microelectronic pack-

aging. In particular, the so-called deposited metal-organic

multichip modules (MCM-DS), which represent the newest

electronic packaging technology for high performance digital

processors, typically are fabricated with meshed rather than

solid power and ground planes [1].

The modeling and simulation of electromagnetic perfor-

mance for modern packaging with solid ground plane(s) have

been studied by the quasi-static and full-wave approaches

[2]-[5], while the propagation characteristics of a signal line

above a periodically perforated ground have previously been

studied [6]–[8].

In [6], the relationship between the fields and the electric

current is derived from the boundary condition under the as-

sumption of infinitesimally thin conductors, and the periodicity

of the structure is taken into account by using the Floquet

principle. Using a similar method, Chan et al. [8] studied the

case in which the signal lines are in a multilayered medium.

In both cases the apertures are rectangular, the signal lines
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are parallel to the edge of the apertures, and the conductors

are assumed to be of zero thickness; both methods employed

EFIE formulation.

One disadvantage of the EFIE, formulation is that in order

to find the solution, the electric current on all conductors

needs to be solved, which results in a large matrix and

requires substantial computing resources. When the structure

is very complicated, it is impractical to use this method due

to the complexity of the current distribution, and the slow

convergence of the double Fourier series.

In this paper, a set of surface EFIEs and surface MFIEs

are derived by imposing the dyadic Green’s functions. The

periodic system is obtained by finding the Fourier transforms

of the field and current distributions, The contribution of the

meshed ground plane is taken into account by the magnetic

current and the images of the signal lines. Thus, a combined

EFIE and MFIE method is formulated. These integral equa-

tions are then converted into a set of matrix equations using

Galerkin’s method, and an eigenvalue problem is established.

Solving the eigensystem, all the working modes of the system

are obtained,

Once the eigensolution is attained, the characteristic impe-

dance of the signal lines is evaluated by the voltage-current

definition and the power-current definition. It is shown that

the characteristic impedance is a constant along the signal

direction. This finding is very much in contradiction to the

conventional concept and the results given by [9], in which

the impedance of the signal line is larger above the apertures

than that above the ground metal.

One important factor in Galerkin’s solution is the choice

of the basis functions. Since the convergence of the double

Fourier series depends upon the smoothness of the basis, a

carefully chosen basis may speed up the rate of convergence

significantly. In this paper, the ELspline functions of different

orders will be used as basis functions.

The periodic apertures make the system behave as a slow

wave structure, which is undesirable in the high speed cir-

cuitry. As a result, we focus on the characteristic impedance

and the dispersive behavior of the signal lines, which are

affected by the shape, size and orientation of the apertures,

as well as by the relative locations of the signal lines to

the apertures as will be seen in Table I of Section IV.

This slow wave phenomenon was not detected by the FDTD

method (Table IV, [11 ]). Finally, we present the results of
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Fig. 1. Two-dimensional periodic structure.

measurement conducted on a test coupon, with the theoretical

results compared with the measurements.

The remainder of this paper is arranged as follows:

Section II provides the basic formulation of the method, in

which a detailed derivation of the integral equations based

on the equivalence principle and dyadic Green’s functions

is presented. Section III discusses the choice of the basis

functions and presents the Galerkin’s solution for the cases

where the signal lines are oriented arbitrarily. Section IV

compares the two definitions of the characteristic impedance.

Section V presents the numerical results and comparisons. A

conclusion is presented in Section V.

II. GENERAL FORMULATION

In this section, we shall derive the combined field integral

equations for a strip line above a perforated ground plane

by means of the equivalence principle and dyadic Green’s

functions.

A. Equivalence Principle and Integral Equations

A general structure of the system is shown in Fig. 1 in which

the shape of the apertures can be arbitrary, as long as the

configuration is periodic. Employing the boundary condition,

we obtain the EFIE as

E.(r) x n = O (1)

where E.(r) denotes the electric field induced by the electric

current. Using the dyadic Green’s function, we have

E.(r) = –jw~
/

~E.(r, r’) ~J(r’)du’ (2)

In the previous equation r E S, the surface of the conductors,

and G ,gC(r, r’) is the dyadic Green’s function, which will be

given later. The EFIE approach requires the electric current

on all conductor surfaces including signals and ground planes

to be specified. It turns out that such an approach makes

the problem too computationally expensive to solve when the

apertures are small compared to the conductor area.

Alternatively, the approach we employed here is the EFIE-
MFIE hybrid method. Imposing the equivalence principle,

we are allowed to close the apertures with perfect conductor

sheets, and then place a pair of magnetic current sheets in the

hole region. The resulting magnetic current is defined as

M(r) = E(r) x ii (3)

Thus the problem has become that of finding the electric

currents on the signal lines above a solid perfect ground, and

the magnetic currents above the aperture area. Applying image

theory, the ground plane is removed, with its effect replaced by

the images of the electric current and magnetic current. Based

on this approach, the free space dyadic Green’s functions can

be used.

In an manner similar to the EFIE formulation, on the

conductor surface, we have

{E.(J) + Em(M)} x n = o (4)

The electric field induced by magnetic current sources is

Em(r) =
/

GEm(r, r’) . M(r’)dv’ (5)

where ~E~ are the dyadic Green’s function (whose forms

will be provided later in this section).

For a ground plane of zero thickness, the tangential compo-

nents of the magnetic fields are continuous across the boundary

in the aperture region. As a result, we arrived at the magnetic

field integral equation

n x [H,(J) + Hm(2M)] = O (6)

where M denotes the magnetic current above the apertures.

These magnetic fields can be computed by the corresponding

integrals, involving the corresponding dyadic Green’s func-

tions. The four dyadic Green’s functions are

H.(r) =
\

GH. (r, r’) J(r’)dv’

Hm(r) = –jwe
/

~Hn(r, r’) . M(r’)dv’

where ~H. and ~Hm are the free space dyadic

functions. The four dyadic Green’s functions are

(7)

(8)

Green’s

G~,(r, r’) = ~~n(r, r’) = (I+ &VV)g(r, r’) (9)

GH. (r, r’) = GEm(r, r’) = V X ~~.(r, r’) (lo)

where

~–jklr–r’]

g(r, r’) =
47rlr – r’!

(11)

In the previous equations the first subscript denotes the type of

field, while the second denotes the type of source. The effect

of the ground plane is taken into account by including the

contribution of the image currents.



PAN et al.: ANALYSIS OF TRANSMISSION LINES OF FINITE THICKNESS ABOVE A PERIODICALLY PERFORATED GROUND PLANE 385

B. Spectral Domain Representation of Currents and Fields
H.(x, Y, Z) = ~ ~ T~%”J~~(z’)e~enmdz’ (23)

Consider a two-dimensional structure as shown in Fig. 1 in nm

which the structure is periodic with period Az and AY in x

and y direction, respectively. By using the Floquet theorem,

the electric current can be written as
cow Hm(~, y, z) = ~ ~Ynm.Mnm(z’)e~’nM dz’ (24)

J(~, y, ~) = ~ ~ Jnm(z)df’~~”~”u~yJ (12) nm

‘n. -cc rn.-m

where Z .~ , T:: , T*’_nm and Y.,.
with ~.. = pm., fign = pvm + kvo, pzn = ~, and

are 3 x 3 tensors. The tensor

elements of Z and Y are obtained as
~. kvo is the propagation constant in y di~ection,Pym = &

and J~~ (z) is the Fourier coefficients given by up Kari,fi
zap.. = g ~

w& KaK,$
‘, U@tm = ~~ (25)

A. Av

Jnm(z)=+
//

1) Znm O .nm

J(z,y,z)e–~@’Z+ p’~y)dzdy (13)
~Yoo where {Q, /3 = x, y, z}, a # ,B, and

which is a function of spatial coordinate .z only. Similarly we

can represent M(z, y, z) by Fourier series. w~ (~a – ~:) y _~ (M – ‘@
To find the spectral domain representation of the fields, we z ——

““”m = 2k; Kznm ‘ ““”m = 2k; K,nm
first give the spectral domain representation of the Green’s (26)

function. For two-dimensional periodic structures, we have where a = z, y, and

g(z–z’,fiwn,lfgm ) ‘//g(~,~’)~j[’on(z’-~’m@’%)]dz’dy’ w/JJ (M- %nm)- Wbnma(z - 2’)
(14) ‘“nm =

——
2k;

(27)
K

which has a closed form as
znm

~–hmlz-z’l
tj(z – z’, l$.~, Kvm) = (15)

j2t$znm
Y

w, (k: - I&J - j2Kznm8(2 - 2’) (28)
——

where ““m = 2k; Kznm

K,znm = dk; – K;n – t#
’16) In the previous equations the use of the relation has been madeym

If the structure is periodic only in the propagation direction,

we have :Sgn(z – 2’) = 26(Z – 2’)

@(PJP) (17,

(29)

j(z – Z’,,z – ,z’, kym) = & ~
where sgn(.z) is the sign function.

J=)where K. (p kz kz is the modified Bessel function, and
The tensor elments of TEn and TH’ are obtained as

P = /($ – Z’y + (z – 2!)2 (18)
~Ern = ~:mem = ~

aomm (30)

For simplicity, in the following derivation we only dis-
where Q = x, y, z, and

cuss the two-dimensional periodic case, the one dimensional

case can be obtained very easily in a similar fashion. For
T~y~m = TH’ = –Tfi~m Z= –T~nm = –~sgn(z – z’)

convenience, we define Go as
(

yznm

Go(x,y,.z,2’,n,m) =g(iZ-2’,Kzn,Kym e) ~(fbnd+%nY) (19)
/

T:z:m = TH’ = –T:~m ,. _’THe *
zznm xznm = — Z%:nm

e.io.m (31)

GO(x, y,z, z’, n,m) = - (20) Thus we getthefinal form of the combined integral equations
.72Kz.m as

The fields induced by the electric and magnetic sources are

obtained in the following form
nx

/-

E/{ Znm .J.m(z’)+~~: .Mnm~6nmdz’ = O (32)

Ee(x,v, Z) = ~ Z~~J~~(z’)e~6”mdz’ (21) ‘m

nm
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~Y

o
Fig. 2. Two-dimensional spline basis, first order in x direction and second
order in y direction. Solid line: b(z, y) = 131(%)Bz(Y); dashed line:
b(z, y–1) = Bl(z)B2(y– 1).

Fig. 3. Redefined period and coordinate rotation: rectangular apertures.

III. NUMERICAL SOLUTION OF INTEGRAL EQUATIONS

A. Ex~ansion of Currents with Piecewise Basis where * denotes the convolution operator, and BN (z) has a. .

As a first step in the numerical solution, we expand the
compact support of [0, ~+ 11, that is, it is nonzero only within

surface current by means of a set of basis functions, yielding
[0, IV+ 1]. The commonly used pulse function and triangle

functions are the simplest B-spline functions of order O and

lJa(z, y,z)) = [B:]IJJ (34) order 1. A third order B-spline ~ttnction has the following form

lfvfa(%, ~,z))= [l?:]lMa) (35) B3(Z) = :5 (:)(-l)W 01 (40)

where {a = x, y, 2} respectively; {b~i(~, g, z), ~ =
1=0

z, y, z, @ = e, m} are the i – th basis function for the six where

current components. It follows that the Fourier transform of

the currents is obtained as
{

x–l ifx>l
(x-l)+= o (41)

otherwise

\Janm(z)) = [A:nm] \Ja) (36)
The Fourier transform of the B-spline functions takes the form

pkfanm(z)) = p~nm]ph’ifs) (37) ‘N(w)=(1:7’rw)N+’(42)

where ~~mm(z) are the Fourier transform of the basis func-
It may be noted that we can increase the rate of convergence

tions {b~nm(z),a = x,y, z,,6 = e, m}.
If only the surface currents are considered, the volume

of the double Fourier series by increasing the smoothness of

current degenerates to a surface current distribution. Thus
the basis functions. However since the high order splines take

the basis functions are defined on surfaces, and in this paper
more spatial support, a finer discretization is needed. An effect

the basis functions are defined in rectangular patches. Using
way to avoid this problem is using higher order splines in the

local coordinates, for convenience, the basis functions have
current direction, while using lower order splines for the other

direction. An example of hybrid spline basis is shown in Fig. 2.
the following form

l?.. = P(ZL– ‘t&)qv – Vua)r$(w – w..) (38) B. Galerkin’s Method and Matrix Equation

where v and u are respectively the direction of the current Substituting (36), (37) into (32), ( 33), we have

flow and the transverse direction, w is the normal direction to

the conductor surface.

As discussed before, both fields and currents are represented ~~~~..~j+T~xE~~}e~~.=o (43)

in the form of two dimensional Fourier series. The conver-

gence of the series is a very important factor in numerical

computations. To achieve a rapid convergence rate, a smooth

basis should be used. In this article, the B-spline functions of

different orders are used for functions P(u) and Z’(v).
~]fip:~~;+yn.wj}e’’~.’=o (44)

A B-spline function of N-th order is defined as
which are two sets of linear equations with finite number of

BN(z) = BN-l(z) * BO(~) (39) unknowns. By choosing the weighting functions in the same
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Fig. 4. x-component of electrical field in the apertnre, by EFIE-MFIE hybrid
method.
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Fig. 5. x-component of electrical field in the aperture, by EFIE method.

way as the set of basis functions, we have a Galerkin solution

for the combined field integral equations

where Q,,6 = x, y, z, each of the four submatrices is a 3 x 3

submatrix with the matrix elements as

[Xa,]ij = ~J./ Xapnd:,i (Pm,PYTn)
nm

where X = Z, TEm, TH’ and Y, X = Z, TEm, THe and Y,

12!,,8 = X,y, .z.

2.5 -

/

EFIE-MFIE . . . . .
. . . . . .

. . EFIE

2.0 –
..’.

1.5 –

YO
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0.0 I I I I
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Fig. 6. Comparison of dispersive characteristics between EFIE-MEIE hybrid

method and EFIE method.
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Fig. 7. Comparison of impedance between P-I and V-I definitions

By enforcing the determinant of the coefficient matrix of

(45) to zero, we will solve for the propagation constant kg,

and furthermore, for the eigen current and field distributions.

C Expansion of Magnetic Currents and Coordinate Rotation

Though the ground plane is periodically perforated with

rectangular apertures, the periodicity of the structure depends

on the orientation of the signal lines. AZ,AY, the period

of the structure in x and y direction, are determined by

tan9 = #, which must be an rational number. Since am
rational number is defined by the ratio of two integers,

Am, Ay are the corresponding minimal integral numerator and

denominator, respectively. Fig. 1 depicts the case in which the

angle between the aperture edge and the signal line is 6. When

0 = O, we obtain a parallel problem similar to that of [6]; when
O = 45°, we get a structure in which the signal lines are in

the diagonal direction of the apertures. Note that the basis

functions are defined on rectangular cells. For the structures

in Fig. 3, one problem with the Fourier series expansion of the

current is that some basis functions are divided into different

periods, where each period is usually defined as a rectangular
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Fig. 8. Propagation constant kg versus x, 25% square, 50% square. and 50% rectangular apertures, 45° case.

cell, as shown in Fig. 3. This problem can be circumvented

by utilizing the periodicity of the Fourier transform and the

periodicity of the structure, that is, to rearrange the unit cell

as shown in the rectangular bordered by dashed lines, and

referenced to the (s’,/) coordinates. Mathematically the old

and new unit cells are equivalent.

Consider the general structure in Fig. 1, where the angle

between the signal line and the edge of aperture in the ground

is denoted as 0. In (z, g) coordinates, the z and y components

of the magnetic current are obtained by expanding them in the

(z’, y’) coordinate in terms of basis functions,

2’=1 Z=l

where

x=x’cos O–y’sin O y=#sin0+tJcosf9

then Fourier coefficients of ill. and ALLYare

(47)

(48)

(49)

(50)

where

where p., n~, pv,nm are defined as p~nm, = p~~ cos 0 +

pYm sin (3, p~nm = –pzn sin 6’ + Pvm cos 9.

D. Convergence of the Fourier Series

The numerical solution involves the calculation of the

two dimensional summations which are truncated at some

lengths that are determined by the convergence rate of the

series. Denoting the convergence rate of the basis function as

N. X N.,

(53)

where NU, NV are the orders of the basis in dimensions u and

v, and (u, v) = (~, y) or (z’, y’), then the convergence rate

of each element is in the order of 4(NU + 1) x (N., + 1) for

the Galerkin solution.

Rigorously speaking, (53) only gives the asymptotic conver-

gence property of the series. Besides the rate of convergence,

the length of the summation for the given accuracy also

depends on the size of the geometry. If the discretization size

is too small, a longer truncation is needed.

One problem with the coordinate rotation is the convergence

behavior of the two dimensional Fourier series. Note that the

basis functions are defined in the source region while the

testing functions are defined in the field region. They may

be defined in the primed and unprimed coordinate systems,

respectively, and their Fourier transform, in this case, will

be the functions of pm~, pv~ and p~nm, p~nm, m n, m n +
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Fig.9. Impedance 2. versus x, 257. square, 50% sqnare, and 50’70 rectangular apertures, 45° case.

m, n – m if O = 45°. As a result, the rate of convergence

may not be as high as estimated above. Fortunately, this case

only occurs for the interaction between the signal line and

the ground aperture, there is an exponentially decaying factor

associated with

rapidly.

IV.

I.z– z’{, which makes the se~es converge very

EQUIVALENT TRANSMISSION LINE

MODEL AND CHARACTERISTIC lMPEDANCE

Given the fact that the structure has discontinuities in

the propagation direction, it is natural to conceive that the

characteristic impedance is the function of the position along

the line. It is true if we only consider the traveling wave.

However, by solving the eigen equation in the last section, we

obtained the propagation velocity and eigen current and field

distributions for the dominant mode. This mode consists of

the superposition of all spatial harmonics, each of them can

not exist by itself except under some special circumstances

such that the period is the multiples of the wavelength. As

a consequence, there does not exists a pure traveling wave

but a combination of the traveling waves and standing waves.

Hence the characteristic impedance of the signal line is not

uniquely defined [12].

However, if the working frequency is not extremely high
so tbe period is smaller than the wavelength of interest, and

the displacement current is much smaller than the conducting

electric current, we can establish a uniform transmission line

model from the fact that the propagation current is a constant

along the signal line. The characteristic impedance of the

equivalent transmission line can be defined either by the

voltage-current definition or power-current definition [13]. As

shown later later, these two definitions are consistent.

By letting the potential of the ground plane be zero, the

voltage-current definition gives the characteristic impedance

as

v(y)
-WY) = ~ (54)

In the above equation l(y) is the electric current flowing in the

propagation direction on the signal line, which is a constant

along the signal line and can be evaluated from

!~(y) = H(z, y, z) . dl (55)

while V(y) is the electric potential of the signal line which

is defined as

/

s
v(y) = E(z, g, z) . dl (56)

9

where g,s are the reference points at the ground and signal

line, respectively. Since the electric potential in the aperture

region is not zero, the reference point g should be chosen on

the conductor part of the ground plane.

The power-current definition of the impedance is

(57)

where P is the average power associated with the eigenfields

flowing through a period, and can be found as

Az cc

/./
P= dx Sy d.z (58)

o —w
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— 12 pm Signal Line

~ 30 pm Signal Line

G = Ground
S = Signal
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Cascade Microwave

Probe Site

Fig. 10. Configuration of Boeing test couuon. Mesh ground plane is 40 urn pitch, 25% aperture. Probe pad size is 75 x 100 um, 150 Umpitch. Pads are
arranged in G-S-G configuration, and electrically conected to signal lines and ground through vias.

S’g = ~Re{E x H*} j (59)

the superscript * denotes the complex conjugate.

From Eqs.(21)-(24), the Poynting vector takes the following

form

where

E *m = /( Znm J(,z’) + T## . Mmm) e~enmdz’ (61)

From the orthogonality of trigonometric functions, the integra-
tion with respect to z in Eq.(58) will annihilate the summation

with respect to n’, and we obtained the expression for power as

V. NUMERICAL RESULTS AND MEASUREMENTS

As a numerical example, we first studied the structure in

Fig. 1 with O = O, in which the signal lines are oriented

directly above the center of the apertures and parallel with

the aperture edges. The normalized dimension of the structure

has a period of 1 unit x 1 unit with a 56.25~0 square aperture;

the width and height of the signal lines are 0.25 and 0.5,

respectively. This structure is also studied in [6] and [8] by

means of the EFIE formulation. In this paper, the structure

is solved by the hybrid EFIE-MFIE formulation. The x-

component of electric field Ez in the aperture region is plotted

in Fig. 4 from the hybrid method, and Fig. 5 from EFIE

method. From these figures it may be observed that the EFIE

approach results in significant numerical errors that lead to

large nonzero tangential fields at the aperture edges. These

nonzero fields make the effective aperture area appear larger

than it should be. On the contrary, the hybrid solutions satisfy

the boundary condition accurately, thus providing better results

than does the EFIE method.

Fig. 6 compares the propagation constant obtained by the

two methods: the solid line represents the result for the

hybrid method and the dashed line for the EFIE method. At

k. = 0.01, the EFIE generates the value of the propagation

constant of the dominant mode of kv = 0.010683, which is

essentially the same as the result from the hybrid method.

As the frequency increases, i.e. for larger /co, the EFIE

demonstrated a greater dispersion of the propagation constant

with frequency than does the hybrid method, due to the larger

effective aperture, which is inaccurate.

To verify the validity of the two definitions of the character-

istic impedance given in the previous section, we computed the

impedance of the structure as shown in Fig. 1 with $ = 45°.

The signal lines in this structure are 12pm wide, 5pm

thick, and 5pm above a perfect ground plan perforated with

40 x 40pm square apertures; the line pitch is 80 #m. By
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F]g. 11. TDR measurement of characteristic impedance on HP54123.

normalizing the period to 1 x 1, we converted the width

and height of the signal line to 0.212132 and 0.088388. In

principle, the formulae (32) and (33) are full wave equations,

and can handle transmission lines of finite thickness. However,

for simplicity, we ignored the thickness of the signal lines in

the next few examples. After the eigencuments and eigenfields

are obtained, the characteristic impedance is evaluated by

means of the voltage-current and power-current definitions.

The results are illustrated in Fig. 7. It maybe observed that the

two definitions give approximately the same results. However,

since the power-current definition involves triple summations,

much more CPU time is required to achieve the result.

To study the variations of dispersion and impedance caused

by the relative position z of the signal line with respect to the

aperture , and the shape and size of the apertures, we calculate

the propagation constant and characteristic impedance employ-

ing the EFIE-MFIE approach. The propagation characteristics

and the characteristic impedance versus location z are shown

in Figs. 8, 9, where the normalized wavenumber is chosen to

be k. = 0.1, the aperture size is 25~0 and 50~0 for square

apertures, and 5070 for rectangular aperture, respectively.

The comparison of the propagation velocities of the signals

for different structures are shown in Table I, where four cases

are calculated. The width of the signal line is 12 urn, height to

the ground is 5 ~m, pitch-to-pitch distance is 80 ~m, all with

50% aperture/period ratio. The working frequency is chosen

at 5.9GHz which corresponds to k. = 0.01. The length of

the Fourier series are chosen at Lz = 16, LY = 16 and

Lz = 32, Lu = 32, respectively, the results are accurate to

the fifth digit. We can see that the location and shape of the

aperture affect the dispersion greatly.

From the figures described above, we can see that disper-

sion and impedance depend on the percentage area of the
conducting plane directly beneath the signal line. To reduce

the variance of dispersion and impedance as functions of x,

a rectangular aperture meshed ground plane is proposed in

[14]. This proposal has been rigorously evaluated in this paper.

The dispersion and impedance vahtes versus location ~ for

a rectangular aperture meshed ground plane, in which the

dimension of the aperture is ~ x ~, as shown in Fig. 3.

Comparing these results with the other curves in Figs. 8 and

9 we conclude, in contradicticm to the claim in [14], that

the rectangular aperture scheme slightly improves impedance

but worsens dispersion over the square aperture scheme.

Nonetheless, from the manufacturing perspective, particularly

for correct alignment of through-hole vias, the rectangular

scheme is much more difficult to fabricate with high yield.

To verify our numerical solutions, we measured the char-

acteristic impedance of a meshed ground plane test coupon

donated by the Boeing Aerospace Co. The measurements

are conducted on both an HP-8510C network analyzer and

on an HP-54123 sampling oscilloscope. Fig. 10 shows the

configuration of one of the meshed ground plane test coupons

designed and fabricated by the Boeing Aerospace Co., while

the TDR measurement of the coupon from the HP 54123

is plotted in Fig. 11. Table II shows the comparison for

different approaches. We can see from the table that when

the finite thickness of the signal lines is incorporated into the

simulations, the numerical results agree very well with the

measurements.

VI. CONCLUSION

In this paper, the dyadic Green’s function formulation is

applied to derive a hybrid EFIE-MFIE method. The method

can be easily extended to the analysis of multilayered structures

[15], [16]. The B-spline functions are employed as the basis

set. It is found that faster convergence can be achieved by

an increase in the order of the splines. The method can also

be adapted for the lossy conductor case. Several numerical

examples are presented, and a real-world structure is analyzed.

The effects of the location of signal lines, ond the shape and

size of the metal plane apertures on signal dispersion and line

impedance are studied. Numerical results agreed well with the

measurements.

WCis the signal propagation velocity of a strip line above

a solid ground plane.
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TABLE I

COMPARISONOF SIGNAL PROPAGATIONVELOCITY FOR DIFFERENT STRUCTURES

Parallel case above conductor vp/vc =0.9514

above aperture Vp/VC =0.8237

Diagonal case square Vp/Vc =0.9058

rectangular vp/vc =0.8901

ucis tbe signal propagation velocty of a strip line above a solid ground plane.

TABLE II
COMPARISONBETWEEN NUMERICAL RESULTSAND MEASUREMENTS

Models Impedence

Numerical Result @ 57.5Cl

t=5# m 53.4fl

Measurement (Averaged) HP851OC 52.O!Q

HP54123 53.3fl
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